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ABSTRACT
The Western Wind and Solar Integration Study (WWSIS) is one of the world’s largest

regional integration studies to date. This paper discusses the creation of the wind dataset

that will be the basis for assessing the operating impacts and mitigation options due to the

variability and uncertainty of wind power on the utility grids. The dataset is based on output

from a mesoscale numerical weather prediction (NWP) model, covering over 4 million

square kilometers with a spatial resolution of approximately two-kilometers over a period of

three years with a temporal resolution of 10 minutes. The mesoscale model dataset includes

all the meteorological variables necessary to calculate wind energy production. Individual

time series were produced for over 30 thousand locations representing more than 900 GW of

potential wind power generation.

1. INTRODUCTION
Weather-driven renewable energy sources require a new paradigm in power systems analysis.

Conventional fossil fuel power plants can be operated in accordance with the needs of the power

system. Renewable energy sources such as wind or solar are variable and thus the operating

schedules of such plants are largely dictated by the changing “fuel” supply. This is especially

pertinent in the case of wind, photovoltaic solar and run-of-the-river hydro, none of which have

inherent storage in their power plant design. This variability may result in increased costs,

largely manifested through an increase in the ancillary services and/or regulation reserve

required to maintain power system reliability. Integration studies assess these operating

impacts and their associated costs and require a solid understanding of the varying fuel supply.

Various methodologies exist for conducting grid integration studies for wind power and

these are getting significant attention. However, the importance of the fuel supply data that

are used in these studies is often overlooked. The Utility Wind Interest Group released a report

in 2006 [1] on the state-of-the-art in wind integration that identified many key considerations in

trying to integrate wind into a power system. However, the report did not mention the need for

greater accuracy in the simulation of synthetic power output. The International Energy

Agency (IEA) released a report on the research and development needs for wind energy [2]

that identified the need for the creation of a wind characteristics database, but this database



primarily focuses on wear and tear on wind turbines rather than their characteristic power

generation [3]. Follow-up work by the IEA with the Organisation for Economic Co-operation

and Development (OECD) [4] recognised the need for wind energy forecasting, but still

overlooked the need for accurate modeling of synthetic wind energy. The European Wind

Integration Study [5] used observed data as the basis for its prospective build-out scenarios.

This may be reasonable for limited scope scenarios that primarily assess the expansion of

existing wind projects, but is not sufficient to accurately assess the effects of geographical

diversity when new wind projects are studied.

As integration studies become more sophisticated, the importance of modeling the supply

is increasingly recognized [6]. Ideally, an integration study would be based on observed power

output data for each project, yet since these studies are used for planning purposes, they must

rely on model output for projects that are not yet built [7]. In fact, even long-term, on-site

meteorological data (as opposed to power data) are rarely available. Therefore, a different

technique must be used to synthesise the behaviour of renewable energy projects to be

considered in the integration study. IEEE Transactions on Power Systems had a Special

Section on Wind Energy in 2007 including the paper “Utility Wind Integration and Operating

Impact State of the Art” [7] which stated:

“A state-of-the-art wind-integration study typically devotes a significant effort to obtaining

wind data that are derived from large-scale meteorological modeling that can re-create the

weather corresponding to the year(s) of load data used.”

The use of meteorological models and related post-processing in support of wind

integration studies is the topic of the current paper, which uses the Western Wind and Solar

Integration Study (WWSIS) as a case study. The fundamental goal of the WWSIS, which was

funded by the Department of Energy (DOE) and coordinated by the National Renewable

Energy Laboratory (NREL), was to produce a comprehensive dataset that could be used to

model the build-out of potential wind plants in the western United States. This study is one of

the largest wind integration studies to date, covering an area of more than 4 million square

kilometers modeled at a two-kilometer resolution, resulting in over 1.2 million grid points.

From this base dataset, over 30,000 points were selected for further evaluation. Each of these

points was modeled as an individual project with ten VestasV-90 (3MW) turbines. The

cumulative amount of wind power modeled for the entire study is over 900 GW. This dataset

will be made public via a web-interface hosted by NREL and designed by 3TIER.

2. METHODS FOR WIND DATA CREATION
The lack of high quality wind resource data that are synchronized with the region’s electric

load is one of the primary obstacles to conducting wind integration studies. Time series data must

be used to perform power system analysis for systems with significant wind penetration [8].

These data can be obtained in one of three ways: 1) on-site observations; 2) data mining of

either off-site observations or reanalysis data; and 3) mesoscale modeling [6].

On-site observations of power generation are the most desirable data source because they

represent what actually happened (within the accuracy of the instrumentation/data

storage). However, power output observations can only be obtained from existing wind

projects – meaning that the integration studies would have limited application. Alternatively,

wind speed observations could be used, but these are not quite as accurate as observations of

power output, because the conversion of wind speed to power output is not entirely

deterministic, even at the turbine level. Furthermore, a wind speed measurement at a single

point does not adequately represent the average wind speed across the entire project. The

project average wind speed and power output tend to be smoother than the same quantities
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at a single location or turbine [7]. Multiple hub-height anemometers during the entire period of

interest are required to obtain good information for a single site and although this information

exists for some locations, it is not available for most sites. Thus, the use of on-site observations

is of limited use for integration studies.

Data mining/data manipulation is another method of obtaining data for an integration

study. Measure, correlate, predict (MCP) is the most prevalent data mining method used to

produce synthetic wind or wind power time series data. MCP takes a short-term record of on-

site measurements and correlates it to a long-term record of measurements at an off-site

observation station. This technique has some serious flaws that render it inappropriate for

most integration studies. First of all, it still requires (short-term) on-site observations to

establish the correlation to the off-site data. This prevents an analysis of sites for which on-site

data are not readily available. A second major limitation is that a nearby off-site observation

tower with a sufficiently long measurement period must exist. Although a sufficient number

of long-term observation stations exist in some areas, this is generally not the case in sparsely

populated regions, or in most developing countries. A third limitation is that off-site

observations generally have a temporal resolution of one hour, but higher temporal

resolution data are desirable for most integration studies. In addition, the accuracy of MCP can

be problematic if the on- and off-site locations do not have similar meteorological

characteristics. Most long-term weather observation towers are located in places such as

airports and airports are intentionally built in low wind speed locations. The local weather

phenomena can be markedly different for sites that are relatively close, especially if one site

is specifically chosen for low wind speeds and the other site is chosen for high wind speeds.

Complex terrain further amplifies this source of error. However, even if all of the data are

available and the MCP technique is appropriate for the site of interest, it still suffers from the

limitation that MCP cannot be used to produce a gridded dataset. It may be able to produce a

synthetic time series for a single location, but time series at multiple locations are needed to

model the effect of smoothing across a large wind project [9].

Data mining of reanalysis data [10] (spatially and temporally coarse global datasets) avoids

the need for nearby, long-term, off-site observations, but does not provide sufficient temporal

resolution and still suffers from many of the same flaws as MCP – such as unreliable correlations

and the lack of ability to model multiple points per farm (with non-trivial smoothing effects).

Numerical weather prediction (NWP) models are a good alternative to data mining or on-

site observations. The NWP simulations are driven by conservation equations that model the

physical interactions in the atmosphere. The NWP models employ the reanalysis wind speed

datasets (mentioned previously) to determine boundary conditions for the model run, which

is then realistically downscaled (using physical equations) to a finer physical resolution. With

sufficient computing power, these models can be used to calculate wind speeds at evenly

spaced grid points over a very wide area and can also produce simulations at several heights

above the surface. In addition, since the models are reproducing the physical interactions in

the atmosphere, there are no inherent temporal limitations. Wind speed datasets with a

temporal resolution of ten minutes can be obtained with the boundary conditions provided by

a long-term reanalysis dataset with a temporal resolution of six hours.

The NWP model that downscales the reanalysis data is termed a mesoscale model.

Because the mesoscale models run over a smaller area than the larger synoptic scale models,

which are often employed by the weather bureaus, the physics of the model can include

additional detail. For instance, the larger models that assume hydrostatic conditions ignore

the effects of local topography and land use. In contrast, mesoscale models can be non-

hydrostatic and can simulate smaller scale wind patterns such as thermally driven local winds
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and the Venturi effect (mountain winds). In fact, the output from mesoscale models can be

dominated by terrain and non-hydrostatic phenomena. These winds may not be accurately

modeled through data mining from off-site observations or data mining based on reanalysis

data alone.

Once the weather data have been downscaled to a finer temporal and spatial grid, the key

parameters (such as wind speed) can be compared with shorter-term observations, possibly at

multiple locations. Model output and observations often differ due to the necessary

simplifications that the model makes in representing the complexity of the atmosphere.

These errors can be reduced with Model Output Statistics (MOS) equations. The MOS equations

are used to make statistical adjustments to a modeled dataset. These corrections are possible

because the gridded data cover an area in a continuous manner and observation data at one site

will have a sphere of influence that can be used to adjust the model outputs.

However, the NWP methodology is still a model and has two drawbacks. Firstly, the NWP

mesoscale models do not accurately represent all weather patterns and some regions can

have significant errors, which cannot always be corrected with MOS equations. However,

experience shows that these locations are the exception rather than the rule. The second

drawback with mesoscale modeling is the large computational requirement. Large area NWP

simulations with a sufficiently high spatial and temporal resolution require large

supercomputing facilities and even then are slow to operate. Nevertheless, the flexibility and

accuracy of mesoscale modeling justifies the use of the methods and computing resources for

integration studies; even more so since the alternatives cannot provide the gridded data

required for a large wind integration study.

3. WWSIS DATASET GENERATION
The Western Wind dataset was created in two separate stages, but the modeling technique

was consistent to allow for a smooth combination of the datasets. The first stage modeled the

Pacific Northwest and was performed for the Northwest Wind Integration Action Plan

(NWIAP) [11], jointly sponsored by the Bonneville Power Administration (BPA) and NREL. It

covered the states of Washington, Oregon and Idaho as well as most of Montana and Wyoming.

Figure 1 shows the area covered by the NWIAP modeling effort bounded by a striped box. The

second stage expanded the modeling area to include most of the western United States west of

100°W longitude.

3.1 Model Domains
Figure 1 shows four domains: the NWIAP domain, and three other domains. The use of multiple

domains was forced by the magnitude of the area that was modeled at a high resolution. The

model runs are often too large (especially in this case) to run in the memory of a single processor.

The simulation is parallelized by allocating sub-sections of each of the model domains (sub-

domains) to individual computer processors on a supercomputing cluster. However, the

processors that simulate each of the sub-domains cannot do the calculations entirely

independently. Each processor must communicate with the other processors for adjacent sub-

domains. This is required to allow “advection” and “diffusion” operators to transfer

information about weather events between neighboring sub-domains.

Sub-domains allow these models to run accurately and relatively quickly, but in practice

the number of sub-domains that can be accommodated is still limited. The size of each sub-

domain is memory-limited and the number of sub-domains is limited by the bandwidth of the

inter-node links on the compute cluster. If too many sub-domains are used, the communication

channels in the cluster become clogged, resulting in increased latency. The southern region
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identified in Fig. 1 had to be split into two domains to prevent potential latency problems with

the compute cluster.

3.2 Model Configuration
The Weather Research and Forecasting (WRF) model [12] is generally considered to be the

most advanced mesoscale model in North America and has superseded the previous industry

standard, the MM5 model [13]. Thus, the WRF model was used to perform the mesoscale

modeling for this project. The WRF model can be configured to better represent the physical

processes based on model domain, resolution and application. Four different model

configurations were tested for the WWSIS model simulation, the configurations are shown in

Table I.

Configuration A was used as the baseline model configuration with configurations B, C and D

all having a single parameter of deviation. Configuration B used the Mellor-Yamada-Janjic

boundary layer parameterisation, which features explicit prognostic equations for boundary

layer turbulence. Configuration C used the Oregon State University land surface model, a

more sophisticated physical process model for estimating surface fluxes. Both Configurations

B and C should theoretically be better than Configuration A. However, the increased

sophistication in the models introduces additional assumptions and unconstrained

parameters that can adversely affect the accuracy of the model. Configuration D adds extra

vertical levels in the boundary layer to better simulate the vertical profiles of wind and

temperature near the surface.

The trial runs that evaluated the various configurations were simplified, because of the

computational cost of the simulations. The trials were run at a coarser spatial resolution of
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Figure 1: A map showing the modeling domains in the WWSIS. The striped bounding box shows the

NWIAP region and the other domains, black, grey and white, are called Domains 1, 2 and 3

respectively.



6 km × 6 km grid spacing instead of 2 km × 2 km and the model was only run for three out of

every nine days for the year 2006.

The four different model configurations were run for each of the domains. The NWIAP

domain was modeled first and validated against six tall towers (‘tall’ defined as > = 20m). The

validation showed that the default configuration, A, was optimal. The other three domains

were validated against a total of 30 tall towers. Each of the different configurations was judged

qualitatively “best” (over a number of parameters) for at least one tower. For Domains 2 and 3

Configuration D outperformed the other configurations most consistently. For Domain 1

Configurations A and D performed at a similar level of accuracy. The study team decided to

use Configuration D for Domains 1, 2 and 3 to assure consistency.

3.3 Dataset Creation
The selected models were run on the supercomputing cluster. For each model grid point,

defined by latitude, longitude and elevation, the following 21 ten-minute time series were

archived:

• wind speed and direction at 10 m, 20 m, 50 m, 100 m, 200 m above the surface as well

as at 500 hPa (higher in the atmosphere);

• temperature at 0 m, 2 m, 20 m and 50 m above the surface;

• specific humidity at 2 m above the surface;

• pressure at the surface;

• precipitation at the surface;

• downwelling radiation (longwave and shortwave) at the surface.

3.4 Dataset Regridding
The model run was performed at 2 km × 2 km grid spacing across each domain. However, the

edges of the domains were not perfectly aligned as each domain was defined individually. The

original datasets were regridded to achieve a consistent grid spacing across the entire area

covered by the WWSIS. The final dataset has a one arc-minute spacing, which allows easy

identification of the grid points by latitude and longitude.

3.5 Dataset Blending
The four single domain simulations needed to be blended to produce a single, consistent,

dataset for 2004–2006 with a temporal resolution of ten minutes and a spatial resolution of one

arc-minute. In order to produce a seamless dataset, data from the individual model domains
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Table I NWP Configurations using the advanced research WRF core
Configuration Vertical Planetary boundary layer Elevation Land 

levels parameterisation dataset surface

A 31 Yonsei University 30 arc-second 5-layer soil 
USGS diffusivity

B 31 Mellor-Yamada-Janjic 30 arc-second 5-layer soil 
USGS diffusivity

C 31 Yonsei University 30 arc-second Oregon State 
USGS Uni.

D 37 Yonsei University 30 arc-second 5-layer soil 
USGS diffusivity



were blended at the overlapping boundaries (see Fig. 1.). The result was a single large dataset

with over 1.2 million individual grid points. Each of these grid points had an associated time

series with 157,680 time steps for each of the parameters listed in Section IIIC. Dataset Creation.

This dataset, stored in netCDF format, used more than 24TB of storage space.

The sheer size of this dataset caused significant problems. To maintain the integrity of the

dataset, the dataset was copied each time a process was implemented that altered the core

dataset (e.g. re-gridding, blending, etc.). The copy was then altered and the original dataset

was maintained until the altered duplicate could be thoroughly verified. This meant that for

much of the time many TB of duplicate data were being stored as a safety backup. This

process was difficult and time consuming, as even the process of copying 24TB of data is non-

trivial. However, the production of the dataset was a major cost of the project (both in time and

money) and loss of the dataset was not an acceptable risk.

4. POST-PROCESSING THE WWSIS DATASET
The creation of the modeled dataset was the first phase of the project, however, the modeled

dataset had to be converted into synthetic wind energy project data to make the data easily

accessible for power systems modeling. For the purpose of creating these synthetic wind

projects, each grid point was assumed to be its own potential wind project.

4.1 Site Selection for Synthetic Wind Energy Projects
Ideally each grid point in the modeled dataset would be converted into a synthetic wind

energy project. However, many locations are not suitable for the location of wind energy

projects due to other uses, building restrictions and an inadequate wind resource. In addition,

such an approach would have been impractical given the large scope of this study. The

computational time required to access the data, convert from wind speed to effective wind

speed (adjusted by air density) to wind power for each of the 1.2 million points at almost

160,000 time intervals would have been large. Furthermore, even if each grid point were only

assumed to support a single utility-scale turbine the result would still be several TW of wind

energy, well beyond the scope of likely wind energy build-out scenarios. Thus, a subset of the

potential sites was selected for modeling as synthetic wind projects.

The power systems portion of this integration study requires approximately 70 GW of

installed wind energy. However, to allow evaluation of a large number of different build-out

scenarios, it was decided that 3TIER would provide time series data for over 900 GW of

synthetic wind energy sites. To determine the number of MWs that each site could represent

some simple heuristics were used: a spacing of ten rotor diameters between strings of wind

turbines and a spacing of three rotor diameters between turbines on the same string.

To maintain consistency across the dataset, the same turbine was used for each synthetic

wind project. A large turbine was employed because the dataset was designed to represent

build-outs of wind energy up to 2017 (ten years in the future from the commencement of the

project) and there is a trend towards larger turbines. The Vestas V-90 3MW turbine was chosen

as a good middle ground between today’s mean turbine size and those likely to be used in the

future. Using the simple heuristics described above, ten turbines could be assigned to each

grid point representing a total of 30 MW of installed capacity for each site. As a result, 30,000

points were required to model the total amount of 900 GW. Multiple sites could then be

aggregated to obtain wind energy projects of a larger size, still modeled to allow for varying

wind speed across the project.

The site selection process was carried out in several phases. During each phase additional

potential project locations were added to meet a specified goal. The main purpose of the
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WWSIS was to model the WestConnect group of utilities (excluding California). These utilities

are in Nevada, Arizona, New Mexico, Colorado and Wyoming. However, the entire Western

Electricity Coordinating Council (WECC) area was modelled to allow for interactions at the

borders of the WestConnect footprint. The first phase was to pre-select a set of points to

represent existing wind energy projects and those under development. This information was

obtained and compiled by NREL and resulted in 404 sites (or approximately 12 GW).

The next phase was to identify the sites with the highest wind energy potential (based on

wind energy density at 100 m) within 50 miles of existing or planned major transmission

networks or in pre-identified high potential renewable energy zones (REZ) in the study

footprint. 200 GW of sites (6667 sites) were selected in the transmission corridors or REZ

areas.

The third selection phase aimed to find the sites that had the best correlation with the load

profile of the West Connect (limited to sites with a wind energy density of greater than or

equal to 300 W/m2). The load correlation measure was evaluated by calculating the

difference between the average normalised load profile and average normalised wind

energy density (on an hourly basis) – the smaller the difference, the better the site. It was 

also desirable that the sites were geographically diverse; this was achieved by assigning each

state (and two offshore regions) an approximate number of GW that should be selected.

These assignations were based upon the “20% Wind Energy by 2030” analysis performed by

NREL and others [14] and also the relative importance of each state to the WWSIS study

(primarily focusing on the WestConnect region). Table II shows the approximate GW

modeled in each state.

The fourth selection phase was a simple selection by highest wind energy density, again

selected according to the allocations in Table II. The selected sites are shown in Figure 2.
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Table II Distribution of sites for selection (by state and offshore region) using load
correlation and power density

State/offshore region Selected by load correlation Selected by power density 
[GWs] [GWs]

Arizona* 18 18
California 8 74
Colorado* 28 28.5
Idaho 8 13.5
Montana 13 35
North Dakota 4 5
Nebraska 8 5
New Mexico* 32 40.5
Nevada* 33 48
Oklahoma 7 7
Oregon 4 36
South Dakota 7 10
Texas 8 10
Utah 8 11
Washington 4 44
Wyoming* 54 69
Offshore CA 1 4
Offshore WA/OR 0.5 1

TOTAL 245.5 459.5

*In the West Connect study footprint



Finally, after the site selection was complete, it became apparent that some sites that should

have ideally been included in the pre-selected set of sites had been missed. A further set of

“post-selected” sites was identified with input from project stakeholders resulting in an

additional 1499 points. The final number of points that were selected for further study was

32043, each representing a single 30 MW generation site.

4.2 Creation of a Wind Power Time Series at Each of the Selected Points
Numerical weather prediction models have a tendency to produce wind speed time series that

are excessively smooth, that is, they do not produce sufficient wind speed variation at short

timescales. As a result, wind plant output derived directly from wind speeds from a mesoscale

model and put through a rating curve is excessively smooth. Unfortunately, this simple conversion

technique is still regarded by most as the industry standard. An alternative technique, the

Statistical Correction to Output from a Record Extension (SCORE), was proposed in a paper

presented at the IEEE Power Engineering Society General Meeting in 2007 [6]. SCORE has now

been used for five different studies, modeling several GWs of potential wind energy

installations. The SCORE process uses observed statistical deviations from a mean value to

create probability density functions of deviation from some central point. SCORE is run for

each individual turbine and produces a time series of data for each turbine. The individual

turbine time series are then aggregated to represent sub-project groupings or are summed up
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to model the entire project output. However, use of a probabilistic process to model the output

for 32043 × 10 individual turbines is extremely time consuming. In addition, the turbine

locations within each 2 km × 2 km grid would only be approximate, meaning that the

individual turbine locations would provide no extra information. To solve this problem

SCORE-lite was developed.

SCORE-lite models each grid point, instead of each turbine, by aggregating ten individual

samples from the original SCORE probability density functions (as though ten turbines were

being modeled) to develop new probability density functions that represent ten turbines

instead of one. The goal of SCORE-lite is to take the “rated” power output, calculated by

converting wind speed to power output through a simple rating curve, and modify it such that

the overall ramping characteristics more closely approximate those observed in reality.

SCORE-lite was validated as part of this project and found to result in a more realistic number

of ramps without any appreciable loss of accuracy in modeling the diurnal cycle.

5. FORECASTS FOR THE WWSIS DATASET
A wind energy forecast was required at each synthetic wind energy site to adequately model

operation of the power system with the hypothetical wind plants. Many studies have shown

that accurate wind energy forecasts can reduce the costs of integrating wind energy into a

power system [9, 15–19]. To adequately assess the costs and impacts of wind integration, the

wind energy forecast plays a major role. Consequently, four forecasts were provided as part of

the final dataset for this project. These four forecast methodologies represent the range of

forecasting possibilities.

5.1 Persistence Forecast
A persistence forecast provides the simplest kind of forecast, but is only appropriate for short-

term forecasting. As part of this study, the persistence forecast provided a one-hour forecast

with a two-hour look-ahead period. This time delay was chosen as a representative delay as it

allowed time for the forecast to be created and inspected, while still allowing time for an

operator to react before the power had to be scheduled on the hourly timescale. For forecasts

with a target period further in the future than the hour-ahead scale, other techniques must be

used.

5.2 Climatological Forecast
A climatological forecast is also a very basic forecast. It is used for day-ahead prediction and is

designed to capture the average hourly diurnal cycle for the present weather regime. The

previous thirty-day period is often selected as the averaging period. For this project, each

month of each year had its own climatological trace of 24 one-hour values. This actually

includes “future” information in the forecast and so is not possible in reality. However, the

climatological forecast is only a baseline forecast. The mesoscale model forecast provides

more accurate forecasts than the climatological forecast.

5.3 Mesoscale Model Forecast
The mesoscale model forecast represents the state-of-the-art in day-ahead forecasting. This

model forecast represents baseline accuracy for mesoscale model forecasting, as it is not

tuned to any specific project. A mesoscale model forecast is run in a very similar method to

Section III –WWSIS Dataset Generation.

The reason that a mesoscale model could be used to create the synthetic data as well as the

forecasts is that different data were used to provide the boundary conditions to drive the
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mesoscale model. The NWP simulation for synthetic data creation was driven using the

reanalysis dataset described above. The mesoscale modeling forecast was driven using a

different input dataset, the Global Forecast System (GFS) [20], the actual information used to

perform state-of-the-art forecasting.

The mesoscale model forecasting was meant to be a smaller portion of work than the

simulation of synthetic wind energy data, so the same granularity of the models could not be

afforded. Instead, the models were run with a 6 km × 6 km resolution and at the hourly

timescale. This meant that the forecast model was coarser than the original model. As a result,

the model was less computationally expensive and could be run as a single large domain.

True state-of-the-art forecasting is specifically tuned to operate optimally at the desired

forecast location through the use of a MOS correction. Due to the large number of sites (over

32,000 sites) such a detailed procedure was impractical. The mesoscale forecast is a good

measure of forecasts obtained from a state-of-the-art model and also highlights characteristic

errors – but it is not as good as a true state-of-the-art forecast.

5.4 “Perfect” Forecast
The “perfect” forecast is an artificial forecast that cannot be produced in reality, but can be

used to find the minimum wind integration cost. Wind is a variable resource and so even if it is

forecast perfectly, the resulting variation will still require some of the generators on the

system to operate away from maximum efficiency (or change the generation mix). This has

a cost, even if it is perfectly predicted. The perfect forecast is an hourly resolution forecast that

perfectly represents the hourly average of the six ten-minute values. It is used as an upper

bound on forecast accuracy. The true state-of-the-art forecast will lie between the simplified

mesoscale model forecast produced for this project and the perfect forecast produced for this

project.

6. CONCLUSION
This paper discusses the strengths and weaknesses of existing techniques used to develop

data for wind integration studies. It also presents a case study using a large wind integration

study that employs numerical weather prediction models. The WWSIS is one of the world’s

largest regional wind integration studies to date. The final dataset covers over 4 million

square kilometers, with a spatial resolution of 1 arc-minute and a temporal resolution of ten-

minutes. From this dataset over 32,000 sites were selected for further post-processing – each

modeled as an individual wind project of 30 MW, resulting in well over 900 GW of synthetic

wind power simulations.

The paper has focused on the process and decisions that formed the basis for the creation

of this dataset that will be used for the integration study. The process has been presented with

limited consideration of the power systems engineering aspects so that the problems

addressed in this paper should be widely applicable to different integration studies.
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